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A SELF-SENSITIZED PHOTOREACTION OF RHODACYANINE DYE, MKT 077
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singlet oxygen to produce two ca.rbonyl compounds under photo radlauon one of whlch was further
rearranged via Norrish Type I like cleavage to give new types of merocyanine dyes (5 and 8). The
merocyanine dyes were also synthesized by the treatment of thioamide (6) with oxalyl chloride.
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methyl] pyridinium chloride, 1 in Figure 1), which is structurally categorized in rhodacyanine dye, is an
antitumor agent which selectively inhibits mitochondrial function and it has been in the phase I clinical trial.
We demonstrated that compound 1 exhibited a selective antitumor activity against several human carcinoma
cell lines, in spite of low toxicity against normal epithelial cell line CV-1, and it was efficacious in tumor-
bearing nude mice models!. Mechanistic studies also revealed that the inhibition of respiratory activity in
mitochondrial membrane fragments in a dose-dependent manner was the cause of this selective antitumor
activity of compound 12.

The putative decomposition products within a period of storage and administration must be identified

and their nharmacolaeical nronerties also must be evaluated in order to au llfv for clinical nse. Comnound 1
and their pharmacological properties also must be evaluated in order to qualify for clinical use. Compound 1
might undergo a self-sensitized photoreaction resulting in the formation of free radical species or singlet
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oxygen that might induce its d NpOSIiioN. 1m8 18 aue to ihe fact that the rhodacyanine dyes were originally

developed as sensitizers for the photographic systems in which the electron-transfer from their triplet excited
state to the ground state of silver halides took place. In this paper, we have focused on the analytical study of
a novel self-sensitized photoreaction of rhodacyanine dye 1 and the synthesis of its photoreaction products.
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Figure 1. Chemical structure of MKT 077 (1) and influence of oxygen on stability of 1 against light.
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Firstly, we examined the stability of compound 1 in an aqueous solution which was exposed to
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fluorescent light (20,000 lux) at room temperature, and the reaction products were analyzed by using high

performance liquid chromatography (HiFLC). Compound 1 decomposed in 4 hours (Figure 1) producing ihree

major decomposition products which were detected by HPLC (Figure 2). In contrast, only 10 % of compound
1 in deoxygenated aqueous solution (O, <10 ppm) decomposed in 24 hours (Figure 1). This suggested that
the self-sensitized singlet oxygen produced by the energy transfer from triplet exited state of 1 was involved
in the process of decomposition. Singlet oxygen supposedly adds to either or both conjugational carbon-
carbon bonds of 1 to produce dioxetanes, which are unstable intermediates that undergo further fragmentation

to two carbonyl compounds.
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Figure 2. HPLC chromatogram of the decomposition products3.

The two
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utative decomposition products, 3-methylbenzothiazol-2-one (2)4 and 3-ethyl-5-(3-
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mposition products in Figure 2. HPLC analysis and spectroscopic studies (MS, UV) indicated
that peak C was compound 25, while compound 3 did not correspond to any peak. This resuit suggested that
the 1,2-addition of singlet oxygen occurred on the carbon-carbon double bond between the benzothiazole and
4-oxothiazolidine, and that compound 4 to be the counterpart product of the fragmentation (Figure 3).
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Figure 3. Chemical Structure of the putative decomposition products (2 and 3), and proposed mechanism of
photochemical transformation from 1 to 5.
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6 ppm), after being purified by usin
4 was unstable under this condition and that it was further fragmented. The plausible mechanism for the
photochemical transformation for 4 is presented in Figure 3 because the putative unstable intermediate 4 has
thiolactone moiety. The mechanism involves the radical pair intermediate; acyl and thiyl radicals formed by
the Norrish Type I like cleavage of the C-S bond upon irradiation of light’, which undergoes the
rearrangement to produce the product 5.

We tried to synthesize the putative compound 5 in attempt to prove the validity of the photoreaction
mechanism illustrated in Figure 3. As shown in Scheme 1, the treatment of compound 6, which was obtained
by the reaction of 1-ethylpyridinium iodide and ethyl isothiocyanate, with oxalyl chloride gave two products

by HPLC analysis. These two products were found to be chromatographically (HPLC) and spectroscopically
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not elucidate on the structure of the two products compietely, the X-ray crystailography studies revealed that
peaks A and B were compounds 8 and 5, respectively (Figure 4). The activated methylene group was
supposed to react with oxyalyl chioride to produce the intermediate 7, which spontaneously underwent
cyclization to produce compounds 58 (31.5 % from 6) in the reaction of the thioamide 6 with oxyalyl chloride
under basic condition. Compounds 8° was a by-product (3.5 %) which was supposed to be produced by in
situ hydrolysis of compound $.
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Figure 4. X-ray determined structure of compounds S (left) and 8 (right).
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In conclusion, the results of our study confirmed the proposed photochemical transformation
mechanism of rhodacyanine dye 1, as illustrated in Figure 3. Such a photochemical reaction involves the
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formation and the cleavage of oxetane intermediate, Norrish Type I like C-S bond cleavage and
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dyes invaolvin ng the conjugation sysiem from the

@2

nitrogen atom to the carbonyl group, which were independently synthesized by ring-closure with thioamide 6
and oxyalyl chloride. The photoreaction products compounds; 2, 5, and 8, are now being evaluated for their
pharmacological properties in detail.
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